Optimisation of the automated synthesis of ¹⁸F-FMISO using the Synthera[®] Platform

Blykers, Anneleen¹, Vaneycken, Ilse¹, Xavier, Catarina¹, Everaert, Hendrik², <u>Caveliers, Vicky^{1,2}</u>
¹In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium.
²Nuclear Medicine Department, UZ Brussel, Brussels, Belgium.

Objectives

Demonstrating tumor hypoxia *in vivo* in a non-invasive manner by 18F-FMISO-PET can be used to predict resistance to radiotherapy [1]. The automated synthesis of ¹⁸F-FMISO (¹⁸F-Fluoromisonidazole) was optimized on the Synthera[®] Platform comprising a synthesis module coupled to an HPLC unit (IBA Molecular, Belgium). The aim was to establish a reliable synthesis with high radiochemical yield using the FDG configuration setup (IFPTM) and a reduced amount of precursor (5 mg).

Methods

The NITTP precursor(1-(2'-nitro-1'-imidazolyl)-2-O-tetrahydropyranyl-3-O-toluenesulfonylpropanediol) was purchased from ABX (Germany). ¹⁸F-FMISO was synthesized by nucleophilic substitution of tosylate by [¹⁸F]fluoride and subsequent acidic hydrolysis of the tetrahydropyranyl-protecting group (Fig.1) using a standard disposable FDG cassette (IFP Nucleophilic) [2]. Purification was done by HPLC on a VYDAC 250x10 mm C18 10 µm column using H₂O:EtOH (92/8) as eluent at 4 ml/min. Reaction parameters such as reaction time (3-20 min) and temperature (100-145°C) of fluorination were altered in order to optimise the radiochemical yield when using only 5 mg of precursor.

$$NO_2$$
 NO_2
 NO_2

Fig.1 Synthesis route of ¹⁸F-FMISO

Results

Prolonging the fluorination time did not improve labeling efficiency. In contrast, raising the reaction temperature to 120°C clearly lead to higher yields up to 50% (decay corrected) when using 5 mg of the NITTP precursor. Above 120°C, the yield did not increase further and an intermediate side product was

sometimes observed. Reaction times of fluorination could be shortened to 3 minutes at 120°C so that total synthesis including HPLC purification was completed in 40 minutes. The radiochemical purity determined by HPLC was >97%.

Conclusions

We were able to synthesize and purify ¹⁸F-FMISO in a reliable routine production manner on the Synthera[®] platform using the FDG-IFP[™] configuration. Yields up to 50% were obtained with 5 mg precursor, which is acceptable although lower compared to 70-80% that can be achieved with the use of 10 mg NITTP.

Fig.2 Synthera HPLC printscreeen of the main page

Research Support

This research was conducted in collaboration with IBA Molecular and was supported by a grant from Philips Medical Systems.

References.

- [1] Martin G.V. et al., (1992), J. Nucl. Med, 33, 2202-2208.
- [2] Patt M, Kuntzsch M, Machulla H-J, (1999), J Radioanal Nucl Chem, 240, 925–927.