Production of 123I and 64Cu on a 18/9 MeV cyclotron as a starting material for radiopharmaceuticals preparation.

P. Rajec1,2, V. Cafca, M. Lepori1,2, M. Štefečka1, L. Lepori1, M. Reich1, J. Comriková1, M. Ometákova1, J. Ometákova1

1Faculty of Natural Sciences, Department of Nuclear Chemistry, Comenius University, Mlynská dolina, 842 15 Bratislava, Slovakia
2IBA-Bratislava, Slovakia

Iodine-124 ($T_{1/2} = 4.38$ d) and 64Cu were produced by the positron emission tomography (PET) method using a single 99mTc(TcO$_4^-$)-target. The geometrically defined beam spot from the IBA Cyclone 18/9 cyclotron was chosen for the actual target irradiations. The radionuclidic purity of the 123I and 124I produced on the COSTIS target station connected with the external beam of the IBA cyclotron was evaluated on the cyclotron and irradiated with a 25 μm thick aluminium or 25 μm thick Nb disks. The TEP module was placed in the beam line, $E_{\text{BEAM}} = 183$ MeV is a high purity of enriched 123I. The major reaction route is 123I(γ,n)124I. The enrichment is 96.4%. The gamma spectrum of the product was measured by a γ-ray spectrometer.

COSTIS target station connected with the external beam of the IBA cyclotron

Irradiated 123TeO$_2$ target

TERIMO - scheme from the computer screen

The electrochemical cell

Ni electrodeposited onto gold disk

Ni Surface enlargement – 50x

EDX of electrodeposited Ni

Paper chromatography 123I – Rf 0.783

Beam profile measured on Al disk; Nb window 0.25 mm

The authors are indebted to IBA Vienna and the Slovak Research and Development Agency for financial support during realization of the project ESRF-010 Production of the Positron Emitting Radionuclides and the work connected with 64Cu production was supported by the Slovak Research and Development Agency under the contract No. VEGA 0075-50.