Fully automated production of $\left[{ }^{18} \mathrm{~F}\right] f l u o r o a c e t a t e ~ o n ~ I B A ~ S y n t h e r a ~ p l a t f o r m ~$

Mori, Tetsuya ${ }^{1}$, Arai, Ryo 2, Lambert, Bernard ${ }^{3}$, Gameiro-Paris, Cristiana ${ }^{4}$, Kosuga, Takeshi ${ }^{5}$, Asai, Tatsuya ${ }^{2}$, Fujibayashi, Yasuhisa ${ }^{1,6}$, Okazawa, Hidehiko ${ }^{1}$, Kiyono, Yasushi ${ }^{1}$
1 Biomedical Imaging Research Center, University of Fukui, Fukui, Japan, 2 Faculty of Engineering, University of Fukui, Fukui, Japan, 3 IBA, Sterling, VA, USA, 4 IBA Chemin du Cyclotron, Louvain-La-Neuve, Belgium, 5 SCETI K.K., Tokyo, Japan, 6 Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan

Objectives: F-18 labeled fluoroacetate ($\left[{ }^{18} \mathrm{~F}\right] \mathrm{FA}$) has been developed as a PET radiopharmaceutical of acetate metabolism imaging[1-2]. An IBA Synthera is distributed as a compact synthesizer which has disposable cassette concept including one reaction pot and four reagent vials. In the ISRS2011 (Amsterdam) meeting, we reported the automated synthesis of [$\left.{ }^{18} \mathrm{~F}\right]$ FA using the Synthera, however, it included a troublesome HPLC purification process for routine production[3]. In this study, we developed and optimized fully automated synthesis without the HPLC process.
Methods: The synthesis of $\left[{ }^{18} \mathrm{~F}\right] F A$ was modified from the method of Sun et all.[4] (Scheme 1). Limited four reagents were selected as follows: (a) kryptofix2.2.2./ $\mathrm{K}_{2} \mathrm{CO}_{3}$ mixture, (b) ethyl o-mesyl-glycolate as a precursor, (c) 1 M NaOH , (d) sterile water. In addition, we employed 3 pieces of Waters Oasis HLB cartridges to purify an intermediate, ethyl [$\left.{ }^{18} \mathrm{~F}\right]$ FA and perform following hydrolysis. No-carrier-added $\left[{ }^{18} \mathrm{~F}\right]$ fluoride in irradiated ${ }^{18} \mathrm{O}$ water was trapped on a Waters Sep-Pak QMA light cartridge, and the $\left[{ }^{18} \mathrm{~F}\right] f l u o r i d e ~ w a s ~ e l u t e d ~ w i t h ~ d i f f e r e n t ~ a m o u n t s ~ o f ~ a ~ i n ~ 0.6 ~ m l ~ o f ~ 95 \% ~ a c e t o n i t o r i l e / w a t e r . ~ T h e ~ e l u a t e ~ i n ~ a ~$ reactor was azeotropically evaporated at $110^{\circ} \mathrm{C}$ for 5 min under nitrogen gas flow. Then, 15 or 5 mg of \mathbf{b} in 1 ml of anhydrous acetonitrile was added to the reactor and the labeling was conducted at $110^{\circ} \mathrm{C}$ for 5 min in sealed condition. After cooling for 3 min , the hydrolysis was performed on 3 pieces of HLB with 1 ml of \mathbf{c} at room temperature for 10 min . Finally, the solution was transferred to a sterile vial including citrate buffer via an HLB, an almina cartridge and $0.22 \mu \mathrm{~m}$ filter.

Scheme 1. Synthesis of $\left[{ }^{18} \mathrm{~F}\right]$ fluoroacetate
Results: As a result of decreasing the amount of a precursor from 15 mg to 5 mg in labeling process, it did not have significant difference on the yield of fluorination. We also confirmed that the amount of $\mathrm{K}_{2} \mathrm{CO}_{3}$ was remarkably influenced of the yield of ethyl $\left[{ }^{18} \mathrm{~F}\right] F A$ and smaller amount of that was suitable for the purification step. The optimized procedure was achieved with a high and reproducible radiochemical yield exceeding $>50 \%$ (decay corrected) within less than 40 min . The radiochemical purity of the final product was greater than 95%.
Conclusions: The automated synthesis of [$\left.{ }^{18} \mathrm{~F}\right]$ FA without HPLC process using Synthera has been accomplished. This work helps easy access to [$\left.{ }^{18} \mathrm{~F}\right]$ FA production for PET imaging.
References: [1] Ponde DE, et al., (2007), J Nucl Med., 48(3), 420-8, [2] Matthies A, et al., (2004), Eur J Nucl Med Mol Imaging,, 31(5), 797, [3] Mori T, et al., (2011), J. Labelled Comp. Radiopharm., 54(S1), S421, [4] Sun LQ, et al., (2006), Nucl Med Biol., 33(1), 153-8.

