
First experience on producing gallium-68 with liquid target at HUS Medical Imaging Center using a Cyclone KIUBE 180 cyclotron

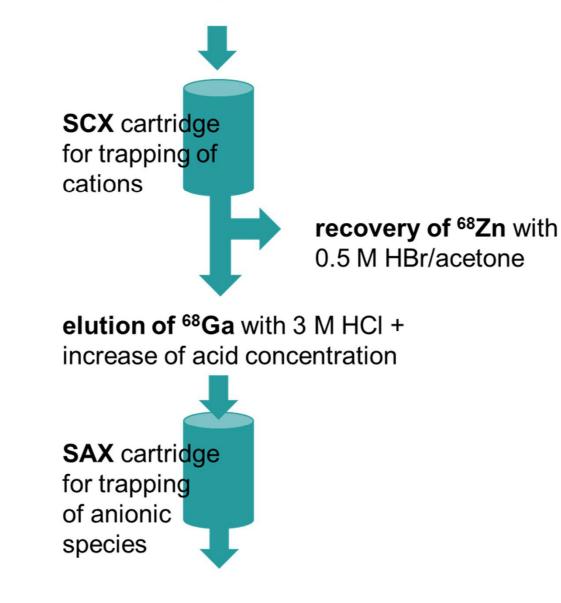
Teija Koivula, Jyri Lehto, Tiina Lipponen, Jaana Laine, Jussi Tervonen and Kim Bergström HUS Helsinki University Hospital, Medical Imaging Center, Cyclotron Unit Haartmaninkatu 4, FI-00290 Helsinki, Finland

Background

HUS Medical Imaging Center at the Helsinki University Hospital provides imaging services for special and primary health care for all clinical sectors within the Helsinki and Uusimaa Hospital District (HUS) in Finland. Significant part of the services are PET-CT studies with ⁶⁸Ga-labelled radiotracers, such as ⁶⁸Ga-dotanoc. To support the in-house production of ⁶⁸Ga-radiopharmaceuticals, a liquid ⁶⁸Gatarget that enables production of ⁶⁸Ga with cyclotron was recently purchased. Results from the first irradiation studies are presented in this work.

Materials and methods

Gallium-68 was produced by 68 Zn(*p*,*n*) 68 Ga nuclear reaction on the Nirta® ⁶⁸Ga liquid target using Cyclone® KIUBE 180 cyclotron (IBA, Belgium). The target was loaded with nitric acid solution containing enriched ⁶⁸Zn (Fluidomica, Portugal). Irradiated target solution was transferred to the Synthera®Extension module (IBA) containing dedicated purification kit/cassette support (Fluidomica) for separation of ⁶⁸Ga. Radionuclidic purity of the ⁶⁸Ga-solution was determined by high-purity germanium (HPGe) spectroscopy (Canberra, USA). Preliminary tests for radiolabeling of ⁶⁸Ga-dotanoc were also carried out using either Synthera® + (IBA) or PharmTracer (Eckert&Ziegler, Germany) synthesis modules.


Table 1: Technical specifications of the Nirta® ⁶⁸Ga liquid target at the HUS Medical Imaging center. •Target body niobium • Volume of the cavity 2,8 mL • Proton beam energy 18 Mev •Target foil 1-2 x 125 µm niobium foil •Target solution ⁶⁸Zn(NO₃)₂ (99,5%) •Target concentration 33 mg/ml

Results and discussion

Results from the first ⁶⁸Ga-productions (n=5) are summarized in Table 2. The target yield was decreased to approximately 225.7 MBq/µAsat when the Nb-foil was doubled. Both ⁶⁷Ga and ⁶⁶Ga were co-produced as expected (Alves F. et al. 2017); other radionuclidic impurities were not identified by the gammaspectrometric analysis of the irradiated target solution, Fig. 5. Isotopic impurities are not separated in the purification method and >4.5 h from EOB their proportion exceeded 2% of the overall activity (Fig. 6), thus the limit planned for cyclotron-produced ⁶⁸Ga (European Pharmacopoeia draft). As the overall time for synthesis (including dispensing) is relatively long, approximately 75 min from EOB, higher radiochemical yields would be desirable to satisfy the need for more than 4-5 patient doses. ⁶⁸Ga-production yield could be enhanced by increasing concentration of the zinc solution (e.g. to 66 mg/ml); higher beam energy would also result in higher amount ⁶⁷Ga impurity and thus affect self-life of the product. Optimal conditions might then be achieved by using medium-size, e.g. 175 µm Nb-foil as an energy degrader.

Fig. 1. Helsinki and Uusimaa Hospital District (HUS) in Finland

Irradiated target solution

elution with 0.1 M HCl to yield ⁶⁸GaCl₃

Fig. 3. Separation scheme for ${}^{68}Ga$ in ${}^{68}Zn(NO_3)_2$ solution.

Fig. 2. IBA Cyclone® KIUBE 180 cyclotron at the HUS Medical Imaging Center

Fig. 4. IBA Synthera®Extension module equipped with Fluidomica purification kit for ⁶⁸Ga-target solution

Radionuclidic purity of 68GaCl₃

 Table 2: Summary of ⁶⁸Ga-irradiation parameters
and resulted yields at different production steps.

Beam current	45 µA
Target pressure	26 bar
Irradiation time	60-70 min
Target yield (one Nb-foil)	251.6 MBq/µAsa
Produced ⁶⁸ Ga-activity at EOB	4.8 GBq
Activity after purification (EOP)	2.8 GBq
Activity of ⁶⁸ Ga-dotanoc at EOS	1.5 GBq

Conclusions

Production of ⁶⁸Ga on the Nirta® target using the ⁶⁸Znsolution was feasible. More studies are needed to find optimal production conditions with respect to radiochemical yield and shelf-life of the ⁶⁸Ga-labelled end-product.

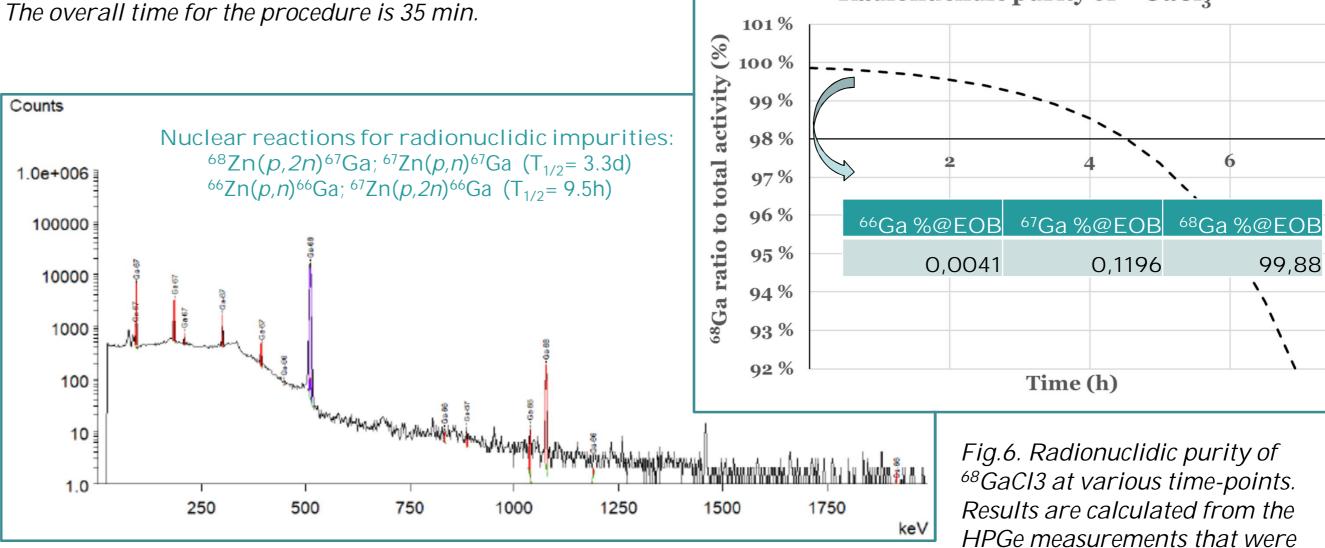


Fig. 5. Gammaspectrum of the purified ⁶⁸Ga-target solution at 8.5 h from EOB. The production conditions were 1 hour irradiation on 94 mg of ⁶⁸Zn using 40 µA beam current and approximately 14 MeV beam energy (two Nb-foils).

Acknowledgements

Dr. Liisa Porra and Dr. Eero Hippeläinen are acknowledged for their valuable help in gammaspectrometric analysis and calculation of the results.

⁶⁸GaCl3 at various time-points. Results are calculated from the HPGe measurements that were continued until 27h from EOB.

References

(1) Alves F. et al., Modern Physics Letters A, 32 (17), 1740013 (2017)