

Wales Research and Diagnostic PET Imaging Centre

Feasibility Study on the Production of Technetium-99m on an IBA 18/9 Cyclotron Using a COSTIS Solid Target System Christopher Marshall^a, Adam Dabkowski^a, Matthew Talboys^a, Sophie Wiltshire^a, Ken Buckley^b, Stuart McDiarmid^b, Victoire Hanemaayer^b, Stefan Zeisler^b, Paul Schaffer^b, Fabienne Devillet^c and Delphine Blampain^c

Wales Research and Diagnostic PET Imaging Centre

- Based at the University Hospital of Wales
- Provide a routine clinical service for most of Wales using a GE 690 PET-CT Scanner
- Equipped with a Mediso pre clinical PET-CT scanner
- Have a GMP licensed production facility producing
 - FDG
 - FDOPA
 - Fallypride
 - Tau
- Equipped with an IBA 18/9 COSTIS solid target station for production of radiometals
 - ⁸⁹Zr
 - 48V
 - 86Y

IBA Based in Belgium

Based on longstanding expertise, IBA RadioPharma Solutions supports hospitals and radiopharmaceutical distribution centers with their in-house radioisotopes production by providing them global solutions, from project design to the operation of their facility.

In addition to high-quality technology production equipment (cyclotron solutions, targetry systems, synthesizers, control systems, ...), IBA has developed in-depth experience in setting up (c)GMP radiopharmaceuticals production centers.

TRIUMF

Based in Vancouver

TRIUMF is one of the world's leading subatomic physics laboratories. It brings together dedicated physicists and interdisciplinary talent, sophisticated technical resources, and commercial partners in a way that has established the laboratory as a global model of success. Its large user community is composed of international teams of scientists, post-doctoral fellows, and graduate and undergraduate students. The University exists to create and share knowledge and to educate for the benefit of all.

Canada's national laboratory for particle and nuclear physics and accelerator-based science

AIM

To determine whether it was possible to produce sufficient quantities of ^{99m}Tc using the ¹⁰⁰Mo(p,2n)^{99m}Tc reaction on an 18/9 IBA cyclotron equipped with a COSTIS solid target system using the targets developed by TRIUMF

PROJECT SET UP

Initial Meeting

First meeting in September 2016 at World Target and Target Chemistry conference at Los Alamos

Environmental Permitting Regulations

Needed to modify permit granted by Natural Resources Wales to enable work to proceed

Ionising Radiation Regulations

Needed to update Risk Assessments in areas where work was to be undertaken

Cyclotron Modification

Need to upgrade cyclotron

Enviromental Permitting Regulations

Initial Meeting

Target material is Enriched molybdenum

IBA Nirta Target Release Form

est:	Acceptance Criteria:	QC Result:	Entered by:	
lolybdenum otopic omposition (%)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Enter enrichment used from batch record Mo-92 0.03% Mo-94 0.03% Mo-95 0.03% Mo-96 0.03% Mo-97 0.03% Mo-98 0.14% Mo-100 09.815% Passed Failed	1行-	
	Mass (0.9g ±5%) 0.855-0.945g	Mass: <u>0.92.49</u> g ☑ Passed □ Failed	V.H.	
Properties of Sintered Molybdenum-100 Pellet:	Diameter (12.3 – 12.7mm)	Diameter: <u>12.3</u> mm ☑ Passed □ Failed	V.Fl	
	Colour of molybdenum pellet	F P P F F	V.H.	

20222170501

Enviromental Permitting Regulations

Needed to determine product radionuclides, daughter radionuclides and likely yields from nuclear reaction

Nuclear reactions modelled in silica

Main channel - ¹⁰⁰Mo(p,2n)^{99m}Tc

Also - 100 Mo(p,pn) 99 Mo $\rightarrow ^{99m}$ Tc

Also need to account for other reactions on ¹⁰⁰Mo and other Mo isotopes

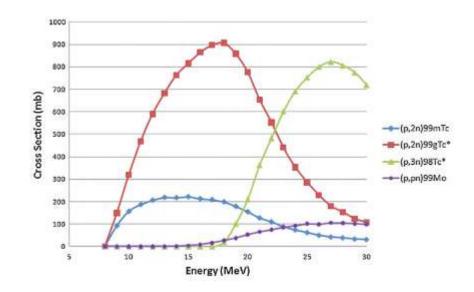


Figure 2. Excitation functions corresponding to the ¹⁰⁰Mo+p reaction products with the highest cross sections in the investigated energy range. Stable isotopes are marked by an asterisk.

Celler et al, Phys Med Biol 56 (2011); 5469-5484

Enviromental Permitting Regulations

There will be some (p,n) reactions produced during irradiation

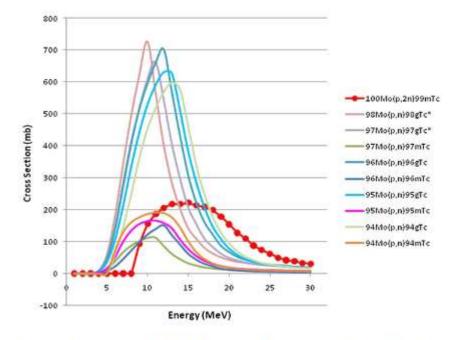


Figure 3. Comparison of the ${}^{100}Mo(p,2n){}^{99m}Tc$ excitation function to the six other technetium isotopes (isomeric and ground states) which are produced through the (p,n) reaction. The excitation function for ${}^{99m}Tc$ is marked with red circles and stable isotopes are marked by an asterisk.

Celler et al, Phys Med Biol 56 (2011); 5469-5484

Enviromental Permitting Regulations

Also will see (p,2n) reactions as well

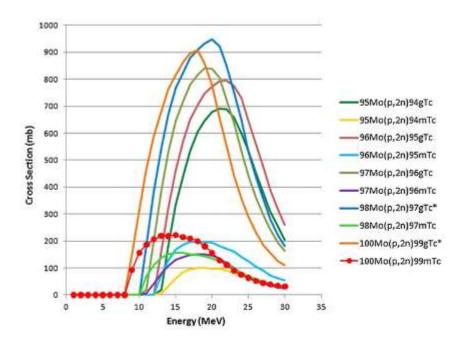


Figure 4. Comparison of the ${}^{100}Mo(p,2n){}^{99m}Tc$ excitation function to the other radioactive and stable technetium isotopes (isomeric and ground states) which are produced through the (p,2n) reaction. The excitation function for ${}^{99m}Tc$ is marked with red circles and stable isotopes are marked by an asterisk.

Enviromental Permitting Regulations

Wide range of radionuclidic impurities generated

Needed to determine product radionuclides daughter radionuclides and likely yields from nuclear reaction

				Cross section (mb)					
Isotope	T _{1/2}	Decay products (with their $T_{1/2}$)	Reaction	10 MeV	16 MeV	19 MeV	20 MeV	24 MeV	30 MeV
43-Tc-93 2.75 h	2.75 h	\rightarrow Mo-93 (4.0×10 ³ yr) \rightarrow Nb-93*	Mo-92 (p,γ)	5.56	1.08	0.68	0.54	0.13	0.014
			Мо-94 (р,2п)	0	322	576	615	610	285.5
			Mo-95 (p,3n)	0	0	0	0	66.1	340.8
43-Tc-93m 43.5 min	43.5 min	$\begin{array}{l} 77\% \rightarrow Tc \text{-}93 \ (2.75 \ h) \rightarrow \\ \text{Mo-}93 \ (4.0 \times 10^3 \ yr) \rightarrow \\ \text{Nb-}93^* \ 23\% \rightarrow \text{Mo-}93 \\ (4.0 \times 10^3 \ yr) \rightarrow \ \text{Nb-}93^* \end{array}$	Мо-92 (р,у)	2.00	0.19	0.09	0.06	0.01	0.003
			Mo-94 (p,2n)	0	48.5	100	101	73.6	29.1
			Mo-95 (p,3n)	0	0	0	0	4.79	31.2
43-Tc-94 293 min	293 min	→ Mo-94*	Мо-94 (р,п)	452	338	129	96.2	33.9	16.7
			Mo-95 (p,2n)	0	442	645	680	597	204
			Mo-96 (p,3n)	0	0	0	0	40.7	378.6
43-Tc-94m	52 min	→ Mo-94*	Mo-94 (p,n)	187	67.2	24.2	19.0	11.1	7.48
		Mo-95 (p,2n)	0	84.3	100.0	98.4	71.0	27.7	
		Mo-96 (p,3n)	0	0	0	0	5.55	46.7	
43-Tc-95 20 h	→ Mo-95*	Mo-94 (p,γ))	1.54	0.7	0.49	0.39	0.08	0.02	
		Mo-95 (p,n)	528	285	108	78.2	30.2	15.9	
		Mo-96 (p,2n)	0	573	747	773	730	259	
		Mo-97 (p,3n)	0	0	0.41	15.8	300	552	
43-Tc-95m 61 d	61 d	4% → Tc-95g (20 h) → Mo-95* 96% → Mo-95*	Мо-94 (р,ү))	0.86	0.24	0.14	0.10	0.02	0.007
			Mo-95 (p,n)	165	54.7	23.3	18.6	11.4	7.6
			Mo-96 (p,2n)	0	186	197	193	142	53.6
			Mo-97 (p,3n)	0	0	0.03	1.69	57.3	82.1
43-Tc-96 4.28 d	4.28 d	→ Mo-96*	Mo-96 (p,n)	594	222	88.1	68.0	33.4	19.4
		Mo-97 (p,2n)	0	720	841	837	532	163.3	
			Mo-98 (p,3n)	0	0	0	0.95	276	601
43-Tc-96m 51.5 min	98% → Tc-96 (4.28 d) → Mo-96* 2% → Mo-96*	Mo-96 (p,n)	122	42.6	14.9	11.1	5.5	3.2	
		Mo-97 (p,2n)	0	140	150	145	80.0	24.0	
		Mo-98 (p,3n)	0	0	0	0.20	50.1	96.5	
43-Tc-97*	4.2×10 ⁶ yr	→ Mo-97*	Mo-97 (p,n)	608	154	61.7	48.5	26.2	16.6
			Mo-98 (p,2n)	0	825	933	948	648	182.2
43-Tc-97m	91.4 d	96% → Tc-97 (4.2×10 ⁶ yr) → Mo-97* 4% → Mo-97*	Mo-97 (p,n)	ш	24.6	13.1	11.4	8.23	5.74
			Mo-98 (p,2n)	0	156	143	135	82.9	30.7
43-Tc-98*	4.2×10^{6} yr	→ Ru-98*	Mo-98 (p,n)	728	110.0	51.9	43.7	28.5	18.9
	/-		Mo-100 (p,3n)		0	101	210	691	723
43-Tc-99*	2.1×10^{5} yr	→ Ru-99*	Mo-100 (p,2n)		864	858.9	777.8	356.3	110.3
43-Tc-99m		\rightarrow Tc-99g (2.1×10 ⁵ yr) \rightarrow Ru-99*	Mo-100 (p,2n)	157	213.5	179.8	155.8	74.9	31.9

Enviromental Permitting Regulations

^{99m}Tc dominates

Significant quantities of ⁹⁹Mo produced

Trace amounts of other impurities produced

^{97m}Tc has 91 day half life. Decays by isomeric transition and emits a gamma ray at 97 keV **Table 5.** Calculated thick target saturated yields (MBq μ A⁻¹) for the dominant radioactive products. Enriched and natural molybdenum targets were irradiated with proton energies 16–10 MeV, 19–10 MeV and 24–10 MeV.

		99.54	% Enriched Mo		97.39% Enriched Mo			Natural Mo		
Product	T _{1/2}	16 MeV	19 MeV	24 MeV	16 MeV	19 MeV	24 MeV	16 MeV	19 MeV	24 MeV
			1	Radioactiv	e technetiu	im isotope	s			
99mTc	6.01 h	2809	4235	5765	2748	4144	5640	272	410	558
^{97m} Tc	91.4 d	6.35	9.51	15.8	41.2	69.7	108	468	734	1125
^{96m} Tc	51.5 min	0.034	0.054	1.38	0.178	0.295	8.62	339	470	710
96gTc	4.28 d	0.164	0.270	7.40	0.862	1.50	46.4	1914	2332	3782
95mTc	61 d	0.140	0.175	0.224	0.143	0.226	0.392	463	738	1198
95gTc	20 h	0.561	0.707	0.920	0.507	0.819	1.59	1640	2693	4765
94mTc	52 min	0.134	0.204	0.304	0.122	0.172	0.242	252	394	604
94gTc	293 min	0.512	0.912	1.65	0.450	0.735	1.24	975	1793	3357
^{93m} Tc	43.5 min	0.009	0.044	0.108	0.009	0.043	0.105	16.8	79.9	196
^{93g} Tc	2.75 h	0.055	0.245	0.709	0.054	0.240	0.688	102	446	1293
				Radioac	tive other of	elements				
99Mo	65.9 h	27.9	220	1222	27.3	215	1196	2.70	21.3	118
^{93m} Mo	6.9 h	0.0000	0.0002	0.004	0.0000	0.0002	0.004	0.006	0.372	6.51
⁹¹ Mo	15.5 min	0.004	0.103	0.57	0.0034	0.009	0.476	9.85	256	1413
⁹⁷ Nb	72.1 min	43.4	94.3	179	42.5	92.3	175	4.20	9.13	17.3
⁹⁶ Nb	23.4 h	10.3	76.0	377	10.1	74.3	369	1.00	7.31	36.5
95mNb	3.6 d	0.027	0.061	0.119	0.173	0.382	0.751	1.62	3.57	7.03
95Nb	35 d	0.358	0.800	1.38	2.25	5.02	8.68	21.0	47.0	81.1
94mNb	6.3 min	0.019	0.219	1.33	0.120	1.38	8.36	12.9	33.7	111
^{92m} Nb	10.2 d	0.013	0.021	0.035	0.009	0.016	0.037	27.0	53.2	120
^{91m} Nb	60.9 d	0.009	0.030	0.094	0.008	0.026	0.077	18.34	66.5	215.2
^{89m} Nb	66 min	0.0004	0.002	0.004	0.0003	0.001	0.004	1.00	4.24	10.7
⁸⁹ Nb	2.0 h	0.002	0.014	0.062	0.002	0.012	0.052	5.07	35.0	154
⁹⁰ Nb	14.6 h	0.0000	0.0001	0.014	0.0000	0.0001	0.014	0.0005	0.233	25.2
^{93m} Nb	16 yr	0.0006	0.0014	0.0034	0.003	0.007	0.019	7.15	15.4	32.6
⁸⁸ Zr	83.4 d	0.0000	0.0003	0.014	0.0000	0.0002	0.012	0.0043	0.649	34.9

Enviromental Permitting Regulations

Open source ^{99m}Tc increased from 2.1 GBq to 500 GBq on permit

Other radionuclides, excluding alpha emitters increased from 0.3 GBq to 100 GBq

NRW did not approve the irradiation of a natural Molybdenum target

Table 4. The calculated number of nuclei of ^{99m}Tc and other reaction products obtained at EOB for 3, 6, 9, and 12 h irradiation of 99.54% enriched thick molybdenum target with 16–10 MeV, 19–10 MeV and 24–10 MeV protons with 200 μ A current. Additionally, the percent ratios of ^{99m}Tc to all technetium, to stable technetium, to all radioactive technetium and to the sum of all radioactive isotopes are listed.

	<mark>3 h</mark>	6 h	9 h	12 h		
		gy = 16 MeV	MeV			
^{99m} Tc	5.13E+15	8.75E+15	1.13E+16	1.31E+16		
Total stable Tc	2.06E+16	4.27E+16	6.59E+16	8.99E+16		
Total other radioactive Tc	1.72E+13	3.38E+13	5.00E+13	6.60E+13		
Total radioactive other	1.26E+14	2.12E+14	2.87E+14	3.59E+14		
99mTc/all technetium	19.9%	17.0%	14.6%	12.7%		
^{99m} Tc/all stable technetium	24.9%	20.5%	17.2%	14.6%		
^{99m} Tc/all radioactive technetium	99.7%	99.6%	99.6%	99.5%		
99m Tc/all radioactive isotopes	97.3%	97.3%	97 <mark>.1%</mark>	96.9%		
	Proton energy = 19 MeV					
99mTc	7.74E+15	1.32E+16	1.71E+16	1.99E+16		
Total stable Tc	3.58E+16	7.38E+16	1.13E+17	1.54E+17		
Total other radioactive Tc	2.85E+13	5.59E+13	8.26E+13	1.09E+14		
Total radioactive other	7.24E+14	1.32E+15	1.71E+15	1.99E+15		
^{99m} Tc/all technetium	17.8%	15.2%	13.1%	11.4%		
99mTc/all stable technetium	21.6%	17.9%	15.1%	12.9%		
99mTc/all radioactive technetium	99.6%	99.6%	99.5%	99.5%		
99mTc/all radioactive isotopes	91.1%	90.4%	89.5%	88.5%		

Ionising Radiation Regulations

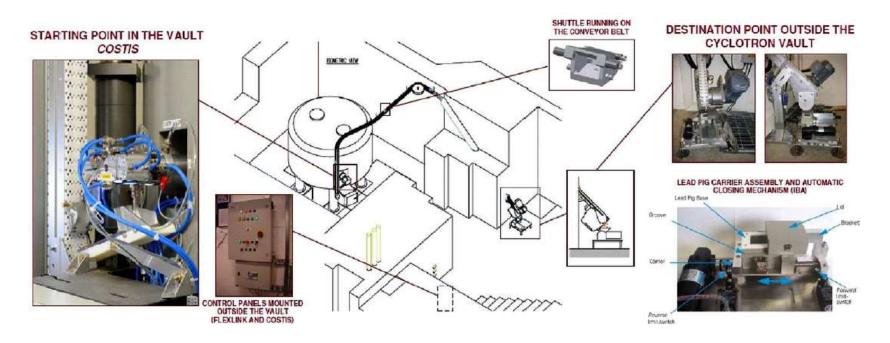
Risk assessments did not show any significant additional risk

Each irradiation expected to produce between 50-100 GBq of ^{99m}Tc

Shielding in all areas designed for 200 GBq of ¹⁸F

Cyclotron Modification

Needed to upgrade target water cooling to allow current to increase from 40 µA to 55 µA


Needed to remove Helium cooling from front of target and replace with vacuum. Achieved with a simple click and connect fitting.

Test of Target Loading and Unloading

In November 2016, we received a natural Mo target to ensure the system could load and unload the target disks

Original target slightly too big to maintain vacuum on target. Diameter reduced from 12.5 mm to 12 mm. Target loading and unloading repeated with new target successfully.

Photographs of the Mo target on a copper backing

Target Irradiations

In February 2017, we undertook 6 target irradiations with representatives with TRIUMF and IBA

3 x **1** hour at **50** μA **3** x 6 hour at **50** μA

Targets were unloaded, transferred to a research hot cell and measured in a Capintec CRC 25R dose calibrator

Repeated measurements were taken using data logging software

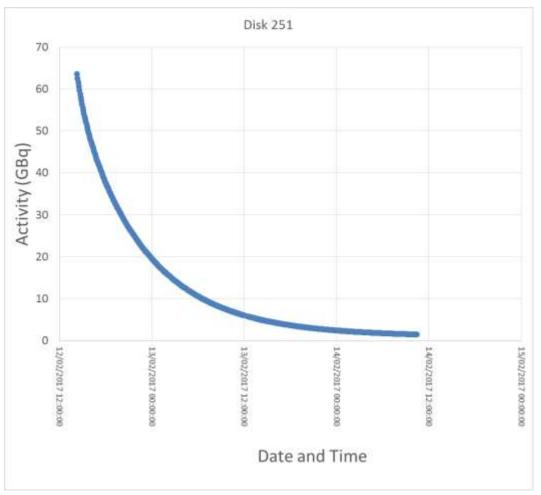
Activities were decay corrected to End of Beam assuming a 6 hour half life

No attempts were made to measure gamma spectrum

Targets were visually assessed for damage post irradiation

Log of a 6 hour irradiation demonstrating stable cyclotron performance

m On' Time : 11:26:11 "Bea	am Off" Time: 17:3	0:28 Total Irradiation time	06:01:30	Operator Name : MANAGER D	ate : 10/02/2017	
Source Parameters :		Coils Power supply paran	neters :	Dee Voltage parameters :		
Maximum Set point : Set point value at Beam Stop :	517.1 mA 517.1 mA	Set point at Beam start-u Set point at Beam stop	p; 139.0 A 139.8 A	Set point at Beam start-up : Set point at Beam stop :	34.1 KV 34.1 KV	
Type:H- Single Beam		Side	1 Side 2/ Side 1 ratio at	J Side 2 beam stop: 0,0		
Port number, target number, volum Requested target current Maximum target current Integrated target current Requested integrated current Edtraction at Beam Stop	e	ũ		7 Cust Torget 7 0.0 μA 52.8 μA 300.01 μA hr 300.00 μA hr 62.05 %		
Input your comments here : To	99m CYCLOTRON P	RODUCTION (MG, AD, SM)	or TRIUMF target 024	6 REUSED test.		
					Stripper side	
0	and the low frances and the	مرد به بر المرد به بر مرد الم	a har marked and the second	and the second second	Stripper side	
0					Target side	
0					Target side	
0					Side 1 press	
10					Side 2 press	
eo		*		A Armon A	Vecuum	
.0					Ion source	


Results

The 1 hour irradiations produced 13.5 \pm 1.4 GBq of ^{99m}Tc

The 6 hour irradiations produced 63 ± 6 GBq of ^{99m}Tc

Activity measurements 4 days later on 6 hour irradiation targets showed < 500 MBq present

No visual evidence of significant target degradation post irradiation

Conclusion

It is possible to produce 60 GBq of ^{99m}Tc on an IBA 18/9 cyclotron equipped with a COSTIS solid target system using the targets designed and produced by TRIUMF without large amounts of long lived impurities

With a modified cooling system, it is possible to use up to 50 μA without target degradation or melting